Universal Properties of the Corrado Segre Embedding

نویسنده

  • Corrado Zanella
چکیده

Let S(Π0,Π1) be the product of the projective spaces Π0 and Π1, i.e. the semilinear space whose point set is the product of the point sets of Π0 and Π1, and whose lines are all products of the kind {P0}×g1 or g0×{P1}, where P0, P1 are points and g0, g1 are lines. An embedding χ : S(Π0,Π1) → Π′ is an injective mapping which maps the lines of S(Π0,Π1) onto (whole) lines of Π′. The classical embedding is the Segre embedding, γ0 : S(Π0,Π1)→ Π. For each embedding χ, there exist an automorphism α of S(Π0,Π1) and a linear morphism ψ : Π→ Π′ (i.e. a composition of a projection with a collineation) such that χ = αγ0ψ. (Here αγ0ψ maps P onto ψ(γ0(α(P ))) =: Pαγ0ψ.) As a consequence, every S(Π0,Π1) which is embedded in a projective space is, up to projections, a Segre variety.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrado Segre and Nodal Cubic Threefolds

We discuss the work of Corrado Segre on nodal cubic hypersurfaces with emphasis on the cases of 6-nodal and 10-nodal cubics. In particular we discuss the Fano surface of lines and conic bundle structures on such threefolds. We review some of the modern research in algebraic geometry related to Segre’s work.

متن کامل

On embedded products of Grassmannians

Let Γ′ and Γ be two Grassmannians. The standard embedding φ : Γ′ × Γ→ P is obtained by combining the Plücker and Segre embeddings. Given a further embedding η : Γ′ × Γ→ P′, we find a sufficient condition for the existence of α ∈ Aut(Γ) and of a collineation ψ : P→ P′ such that η = (idΓ′ × α)φψ. A.M.S. classification number: 51M35.

متن کامل

On linear morphisms of product spaces

Let χ be a linear morphism of the product of two projective spaces PG(n, F ) and PG(m,F ) into a projective space. Let γ be the Segre embedding of such a product. In this paper we give some sufficient conditions for the existence of an automorphism α of the product space and a linear morphism of projective spaces φ, such that γφ = αχ. A.M.S. classification number: 51M35.

متن کامل

Tensored Segre Classes

We study a class obtained from the Segre class s(Z, Y ) of an embedding of schemes by incorporating the datum of a line bundle on Z. This class satisfies basic properties analogous to the ordinary Segre class, but leads to remarkably simple formulas in standard intersection-theoretic situations such as excess or residual intersections. We prove a formula for the behavior of this class under lin...

متن کامل

Segre embeddings and finite semifields

Each embedded product space PG(n, q)×PG(n, q) in an (n2 +n− 1)-dimensional projective space is obtained by projecting the Segre variety Sn,n,q from an n-subspace δ skew with its first secant variety. On the other hand, when δ is skew with the (n − 1)-th secant variety, it determines a semifield of order qn+1 whose center contains Fq. A relationship arises between a particular class of embedding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996